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ABSTRACT

The alignment test system for the AXAF high-resolution mirror assembly (HRMA) determines the misalign-
ment of the HRMA by measuring the displacement of a beam of light reflected by the HRMA mirrors and an

autocolllmatlng flat (ACF). This report shows how to calibrate the system to compensate for errors introduced

by the ACF, using measurements taken with the ACF in different positions. It also shows what information can

be obtained from alignment test data regarding errors in the shapes of the HRMA mirrors. Simulated results

based on measured ACF surface data are presented.

1 INTRODUCTION

The AXAF high-resolution mirror assembly (HRMA) consists of concentric pairs of gra_ing-incidence parab-

oloidal and hyperboloidal mirrors, as shown in Figure 1. X-rays entering the telescope parallel to the z axis are
first deflected by the paraboloid towards its focus, which coincides with the far focus of the hyperboloid, and then

deflected by the hyperboloid to its near focus, which is the system focus. During assembly, the paraboloid is first

aligned to the far focus, and then the hyperboloid is added and aligned to the system focus with the paraboloid in

place. The alignment test system consists basically of a light source and detector located at the appropriate focus,

and a flat mirror (the autocollimating flat, or ACF) located below the HRMA normal to the optical axis. When
the HRMA mirrors are perfectly aligned, a beam of light emitted from the focus will emerge from the HRMA

parallel to the optical axis, bounce off the ACF, and return to the focus. If the mirrors are misaligned, the beam

will be displaced when it returns to the focal plane. Measurements of beam displacements at a number of points
around the HRMA can be used to determine the type and amount of misalignment, which can then be corrected.

The measurements can also provide some information about errors in the shapes of the HRMA mirrors.

If the surface of the ACF is not perfectly flat, it too can cause displacements of the beam. These displacements

can be distinguished from those caused by HRMA misalignment by taking measurements with the ACF in different

positions: beam displacements caused by the HRMA should remain constant when the ACF is moved, while those

caused by the ACF should change in a predictable way. This report shows how to use these measurements to
calibrate the system to compensate for _CF errors. More details are given in an earlier report. 1

Section 2 shows how beam displacements are related to arbitrary errors in any of the mirrors, and shows how

HRMA misalignment, errors and certain HRMA shape errors can be determined from the Fourier coefficients of
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Figure 1: Paraboloidal and hyperboloidal HRMA mirrors with rays from foci to ACF and back, assuming all

mirrors are perfect and perfectly aligned.



the beam displacements. Section 3 discusses the effect of ACF errors and shows how to calculate calibration
coefficients to compensate for them. Section 4 presents some simulated results based on measured ACF surface

data, and Section 5 shows how small random tilts occurring when the ACF is moved will affect the alignment

procedure.

2 HRMA ERRORS

We use the coordinate system zyz shown in Figure 1, and define polar coordinates r and 0 byz + iy : re i°.

The equations of the paraboloid and hyperboloid are r 2 = p2 + 2p(a + _) and r 2 = e2(h + _)2 _ _2, respectively,2

where _ is distance from the system focus along the -z axis, a is the distance between the hyperboloid loci, p and

h are given constants, and e - (1 - 2h/a) -1/_. In practice a = 10069 mm for all the mirror pairs, p = 8.933 mm
and h = 8.945 mm for the outermost mirror pair, and p = 2.496 mm and h - 2.497 mm for the innermost mirror

pair. The hyperboloids extend from _ -- 9180 to 10018 ram, and the paraboloids from _ --- 10099 to 10937mm.
Coordinate _ is given by _ -- b W c + d - z, where b, c, and d are defined in Figure 1. In practice b _ a ._ 10 m,

c _-. 900 ram, and d _ 2 m. We also define 1 = a + b + c.

Let 6(r, 0) = Az + lay be the displacement in the focal plane of the ray that hits the ACF at point re ie. In

practice we actually measure the average displacement of a beam of rays passing through a small circular aperture
above the ACF centered at the point re is. There are 24 apertures spaced uniformly in 0 at the mean radius r

of each paraboloid. The size of each aperture is such as to illuminate two-thirds of the lengths of the HRMA

mirrors.

The reiat!onship between the beam displacement 6 and the errors in the mirrors can be found by ray tracing.

Suppose the surfaces of the paraboloid, hyperboloid, and ACF are given by

r: _/p2 +2p(aq__)_¢(z,O), r: x/e2(h+_)2-_2-r](z,O), and z: f(z,y), (1)

respectively, where ¢, _, and f represent arbitrary errors, which are assumed to be small enough that only terms

linear in 0, _, f, and their derivatives need be retained in the analysis. For the case of a paraboloid alone, if we

trace a ray from the far focus to the ACF and back we find, after no small amount of work, that the displacement

of the ray on its return to the focal plane is

=-2 +:l e (2)

For the case of the paraboloid and hyperboloid together, if we trace a ray from the system focus to the ACF and

back we find, after an even less small amount of work, that the displacement of the ray is

(¢ _ .0¢ .07 07= ,, ,__+4a_-z_37?_w__4a_-z)e's-2a(_+i_--y ). (3)

The beam displacements were derived exactly in closed form using a computer algebra system, but (2) and (3)

have been simplified from the exact final results using p << I, p << a, h << a, p _ h, and b _ a.

Suppose the paraboloid is moved so that its focus is displaced by a small amount (ab,, yp, zp)from its correct

position, and its axis is tilted in some direction _p to make a small angle c_p with the z axis, so that the unit

vector along the mirror axis pointing out of the telescope is (c_p cos tip, c_p sin _p,- 1). If these are the only errors

present then it can be shown using (2) that the beam displacement will be

• 2r is " •
/5 = 2(zp + iyp) + --f zpe - 21ape-'C_'e 2`s.

(4)

If we define similar misalignment parameters zh, Yh, zh, ah, and _l, for the hyperboloid, then for a paraboloid



andhyperboloidtogether the beam displacement will be

`5= 2(z_ + iy_) + 2o_,e '_" + _(Sz_ - zp)e 'e + [(_h -- iY_) -- (_ -- iy,) -- _,,e -'_'] e_'e. (5)

Thus we see that misaiignment of the HRMA mirrors causes beam displacements of the form ,5 ----qo +ql el° +q2 e2_°.

To determine q0, ql, and q: we measure `5(6) at N points 8j = 8o + 27rj/N, j = 0, 1,..., N - 1, and then

calculate the modified Fourier transform

N-1
1

¢_ = -_ _ 6(si)e-'k°_, k = o,1,..., 2v- 1. (6)
j=0

This is related to the usual Fourier transform ¢_ of`5(8i) by ek : e-lks°¢k • In practice the aperture plate has

8o : w/N and N : 24. Any function `5(0) can be represented by an infinite Fourier series

oo

`5(8)= _ q_e'_' (7)

Applying (6) to (7) gives ek = _k, where the symbol ^ on a quantity indicates that it includes aliased terms:

oo

qk-" _ qlc+jN eiiNO°" (8)

Thus in practice we cannot calculate the desired coefficients qo, ql, and q2, but only qo, ql, and q2, which contain
aliased terms. Coefficient q0, for example, includes not only the axisymmetric term q0, but also qt¢) q:_r, etc.,

which appear axisymmetric when sampled at N points. If we assume these higher order terms are small then q0,

ql, and _2 should be close to qo, ql, and q2-

In addition to q0) ql, and q2, we can also calculate qa, q4, ...q/¢-1, which may contain some useful information
about errors in the shapes of the ttRMA mirrors. Note that coefficients qt¢-1, _/¢-2, .-- are directly related to

coefficients q-l, _-2, -..- In particular, for any 1¢we have

4_:+N = e-ilCO°q_: and _-A: = eC'NO°clN-k • (9)

If Oo = Ir/N then 4-k = -_/v-k- Following Glenn, 3 we expand the HRMA error functions ¢ and T/ in the

Fourier-Legendre series

( )
n----0 ra_-- oo _----'0 _------- oo

Here Pn(_) is the nth Legendre polynomial, 2w is the length of the region on each mirror illuminated by the
beam, and z = d and z = c @ d are the axial midpoints "of the mirrors. The polynomial arguments _ -_ (d - z)/w

and t = (c ÷ d - z)/w run from -1 to +1 as z runs over the illuminated parts of the mirrors. The first few
Fourier-Legendre shapes are plotted in Figure 2. The relationship between the beam displacement `5(8) and the

mirror error coefficients ¢,,,,, and r?,,,= can be found by substituting (10) into (2) and (3), and averaging the results

over all the rays passing through the aperture. For a paraboloid alone this gives

Iq_ OO

and for a paraboloid and hyperboloid together

[ 4,_ 4_H 1 e,_,,,÷l_O, (12)`5= _ t(m+l)_°_-_ _+(m-3)_o_+ 1_]
_n_ - oo
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Figure 2: Fourier-Legendre mirror deformation terms for r_m = 00 to 33 (r_ is order in z and m is order in 0).

Alignment test can recognize only the circled terms; others will be aliased as one of the circled terms in the same
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where _o_, qq,_, Ho_, and Ht,_ are defined by

_0_ = ¢o_ - _¢_-, - _¢4_ .... , _1,, = ¢1,_ + -_¢3_ + _gs-, +"', (13)

These results were derived assuming the amplitude of the beam is uniform over the aperture. In practice the

amplitude is actually Gaussian. The only effect that this will have is that in (13) the numerical coefficients
multiplying ¢,,,_ and _7,,m for n > 2 will be different, t If we equate the coefficients in series (11) and (7), we can

solve for _om and _tm:

1 . to 1 •
• o_ = _ (q_+_.- ql-_.), *_ - 214., [(1+ m)q_+_- (1- ._)ql__.], (14)

where * denotes the complex conjugate. These results are not valid for ra = 0; in that case we get only one

equation: _oo - (21/to)_Y2_o = -12q_" Thus the nonaxisymmetfic components of the mirror shape error can

be separated into even and odd components in z, but the axisymmetric components cannot. Similarly, for a

paraboloid and hyperboloid together we get

1 . to 1 " -- (15)
Ho_: _ (q,+_ - q___) - _o_, H_ - 4_ 2._ [(3+.,)ql+_ - (3-.,)q___] + _ --_o_.

In this case when m = 0 we get H0o - (4a/3w)Hlo = -½qt + ½[_oo - (21/to)gtlo]. Note that in order to find

the Foufier-Legendre coefficients for the hyperboloid it is necessary to have previously calculated those for the

paraboloid. In general all of the Fourier-Legendre components shown in Figure 2 may be present in the mirror,

but the alignment test system will "see" only the circled ones nm= 00, 01, 11, 02, 12, 03, 13, .... For m > 0
the even terms 2m, 4m, ... are aliased as term 0m, and the odd terms 3m, 5m, ... are aliased as term lm. For
m = 0 all the terms are aliased as term 00. In practice, because the factors I/w and alto in (11) and (12) are

relatively large, the odd terms _t,,, and ttx,,, will tend to dominate the beam displacements.

Since We cannot actually calculate coefficients q,_, but only _,_, we cannot actually calculate _,,,_ and tt,,m,

but only _,_,_ and t?t,,,_, which will contain terms aliased in 0 as well as z. The total number of coefficients that
can be calculated for each n is N, the number of 0 values at which measurements are taken. In particular, if N

is even, we can calculate _om and _1,_ for m = 1 to I//2 - 1, and some linear combination of _0_ and _1,-,, for

m = 0 and N/2. We do not get two independent coefficients _o_ and _I,_ for m = N/2 because _x+_r/2 and

qt-N/2 are not independent, but are related by equation (9).

3 ACF ERRORS

Equations (2) and (3) show that beam displacements caused by the ACF have the form

(Of. z-_y'Of)e,(o=t=o). (16)_(,.,o)= +2L _

In this equation, and everywhere else in this paper where 4- or :F signs appear, the upper sign refers to the case of

a paraboloid alone and the lower sign refers to the case of a paraboloid and hyperboloid together. The constant

L in (16) is the focal length of the system, which is L = l _ 2a for a paraboloid alone and L = a for a paraboloid

and hyperboloid together. If we wri_te f(z, y) in the form

f(z,y) = _ Ck(r)e ik°, (17)
k=-_

where the Ck's are unknown functions, then the total beam displacement will be

5(r, 0) = _ [q_+_ 4-2rD_Cr)] e'c_+_)_, where D_Cr) = C_(r) 4- -kC_(r).r (18)

k:-e¢
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Figure 3: ACF moved to decentered position ce _v and clocking angle a, as viewed from above.

The coefficients qk represent the desired HRMA information, and the coefficients 2LDk(r) represent the ACF

errors. The Fourier coefficients _k calculated from these beam displacements using (6) will contain both the

HRMA terms and the ACF terms: _k = Ok + 2Lb__t(e). To obtain _k from the calculated Fourier coefficient

ek, we must know 2Lb_-1(r ).

Suppose that the ACF istranslatedin z and y by an amount cei'rand rotated by an angle a, as shown in

Figure 3, in which coordinate system XYZ is fixed in and moves with the ACF. We assume that the Z axis
remains parallel to the z axis. (Section 5 discusses what happens if this is not the case.) It can be shown that

the beam displacement with the ACF in this position will be

oo

6(r, 0, 7, c0 = _ [qk+l ± 2LEk(r, 7, a)] ei(/_+1)0, (19)

where

and where D+(r) and D_-(r) are defined by

D+(r) = D_(r) + k :F 1Dk(r), D_'(r) = D_(r)- k :F 1Dk(r). (21)
r r

Equation (20) has been linearized with respect to the decentering distance c, so c must be small compared to the
horizontal length scale of the variation in the ACF surface. By taking measurements for several values of q, and

a-it is possible to separate the error terms Ek(r, % c_), which vary with q, and a, from the coefficients qk, which

do not.

Suppose that measurements are taken at beam positions 8j -- 0o + 27rj/N, j -- O, 1, ..., N - 1, decentering

angles 7j = 2_rj/N-r, J = 0, 1,..., N_-1. (-all at the same decentering distance c), and clocking angles cU = 27rj/N,_,

j = 0, 1, ..., No - 1. We assume that N_ divides evenly into N, so that the same points on the ACF always line

up with the apertures. All the information from the measurements can be extracted by taking Fourier transforms



with respect to 8, _, and a, in turn:

-
N-1

1 _ df(r, 0j, 7, a) e-ikej,N

N-T- 1

- N, .__

No - 1
1 "

_k,,,_ -- N_ _ 4k'(ai)e-tma_' m = O, 1,...,N'_, - 1.
j=o

k = o, 1,..., N- 1, (22)

(23)

(241

The aliasing relationships for _al,_ are _t+Nj,,,_ = e-iNe°_k,v,,_ and #$k,l+N,,_ = _b_j,,_+No = _kj,-,. If we

transform (19) according to (22)-(24), we find that the only nonzero coefficients_bkb,_are

_k+l,o,o : qk+l, _+l,0,-I: ---- -l-2Lb_(r), _i:+t,1,-_-I = :_cLb++l(r), _k+l,-1,-k+l ---- q:cLD_'-l(r)" (25)

The first two equations give the desired coefficients qa+l and Dl,(r). Because of aliasing, however, these two

equations may not always be distinct. In particular, if k is a multiple of N_ they coUapse into the single equation

_b_+Lo,o = _a+t + 2LD_(r), which makes it impossible to distinguish _k+1 from Dk(r). This is because these

two equations represent information from the clocking angles, and it is impossible to determine ])k(r) using only

information from the clocking angles. Obviously, it is impossible to determine the axisymmetric error term D0(r)

by simply rotating the ACF. Error terms of orders that are multiples of ]V_ appear axisymmetric when sampled

at N_ points, and therefore cannot be determined either.

In these cases it is possible to calculate Dk(r) from the decentering terms D+(r) and b_ (r). In particular,

equation (2I) gives r

- 2(k + 1) [D+(0 - (26)

Unfortunately, we are not dealing with Da(r), but with/)_(r), which includes aliased terms. Summing over the

aliased terms, as in (8), gives

OO

P

/)kCr)--2(k_1 / [D+Cr)-D_-Cr)]- _ /NiDk+dNCr)eO'N'°. (27)
j_oo

We can approximate/)k(r) by the first term on the fight hand side if the terms in the infinite sum are negligible.

If the surface of the ACF is reasonably smooth, then the higher order terms should be small. Wc should therefore

expect good results for small values of k, and in particular for k = 0, which is the case of most interest. How many

additional coefficients Dk (r) can be accmrately determined in this way depends on the relative magnitudes of the

higher order terms. In any case the approximation must break down by the time we reach h = IV/2, since at that

point the term D_N/2(r), which can be expected to be of the same order of magnitude as DN/2(r), appears as

one of the error terms for DN/_(r).

It is also possible for other equations in (25) to be confounded by aliasing. This can be avoided by taking

Nv >_ 3 and Na > 2, or Nv _> 2 and /Ca _> 3, either of which will insure that all the desired coefficients are

distinct (except when k is a multiple of No, as described above). Partial results can be obtained using fewer tests.

If Nv = 1 (in which case c = 0), or if N. r = 2 and Na <_ 2, then the decentering information is lost, and it is

possible to calculate only those coefficients/)_,(r) and qa+l for which k is not a multiple of Na (which means it is

impossible to calculate any coefficients if N_ = 1). If N_ _> 3 and N_, = 1, then the clocking information is lost;

even so, it is still possible to calculate all coefficients except those for /_ = 1 (for a paraboloid alone) or _ = -1

(for a paraboloid and hyperboloid).

The ACE calibration process is summarized as follows. To do a full calibration test, we take beam displacement

measurements _(r, 8,% a) at N beam positions, N-_ decentering angles, and Na clocking angles, where Na >_ 2



and N_ >_ 3 or vice-versa, and where /Ca divides evenly into N. We then calculate the Fourier coefficients ¢kl,,,

using (22)-(24). The calibration coefficients /_k(r) and mlsallgnment coefficients qk are then given by

2Lb (,) = and = (28)

unless ]c is zero or any other multiple of N_, in which case we use

,/c (20)
2LDk(r) = :t:_-_(¢k,z,0-- Ck+:,-1,0) and ¢1k+1 : ¢k+1,0,0 :F 2LDk(r).

Calculating the calibration coefficients from clocking angle data using (28) is generally more accurate than calcu-

lating them from decentering data using (29). This is because rotating the ACF causes certain components of the
ACF error to cancel exactly. In particular, rotating the ACF to Na positions causes all Fourier components except

multiples of N_ to cancd exactly. This enables (28) to give essentially perfect results when/_ is not a multiple

of N_. We have no choice but to Calculate /_0(r) and _1 using decentering data, but the number of additional
coefficients that must be calculated this way can be reduced by increasing the number of clocking angles.

Once calculated, the calibration coefficients 2L/Sk (r) can be used to perform further alignment tests with the

ACF back in its home position (c : 0 and a : 0). For each of these tests we take one set of beam displacement

measurements /_(r,6) at N beam positions and calculate the Fourier coefficients ¢_, using (6). The corrected

misalignment coefficients are then given by _k+l = ¢k+l t: 2L/_k(r).

4 NUMERICAL SIMULATION

Some numerical simulations were performed to test the ACF calibration procedure and to estimate a suitable

value for the decentering distance c. The results here are from a simulated calibration test using 384 beam dis-

placements calculated at 24 beam positions, 4 decentering angles, and 4 clocking angles. The beam displacements

were calculated using (16), and the calibration coefficients Dk (r) and misalignment coefficients qk were calculated

from the beam displacements as described in Section 3. The function f(z, y) in (16) was taken to be a 16th-order

Zernike polynomial fit of actual ACF surface data. The Zernike fit smooths some of the test noise and gives a
differentiable function to use to calculate the beam displacements (16). We would expect the actual surface to be

at least as smooth as the 16th order Zernike fit, but if this is not the case the actual errors may be larger than

predicted here.

Figure 4 shows the real and imaginary components of the calculated hyperboloid calibration terms 2LD0(r)
as a function of distance c for each of the six original mirror pairs r = 607, 547, 488,431, 375, and 321mm. Of

the three calibration coefficients required for alignment purposes, D0(r) will generally be the one with the highest

error, since, unlike/__l(r) and/9_(r), it is calculated from decentering data. It can be seen that the calculated

values of D0(r) are quite consistent for values of c up to "about 10 or 20 ram, at which point they start to curve

up or down. This suggests that c should not be larger than about 10 or 20 mm. The worst case, represented by

solid lines, is for the outermost mirror pair at r ----607 mm, which lies fairly close to the outer edge of the ACF.

Figure 5 shows the error in coefficient _, which, since it is corrected by Do(r), will generally have the highest

error. The solid line again represents the worst case r = 607 ram. For c -- 10 mm the error is less than 1pro for
all r. The error curves are approximately straight lines with slope two, which indicates that the error is of order

c_. This is consistent with the derivation of the calibration procedure, in which only terms linear in c were kept.

The fact that the errors are nicely proportional to c 2 implies that it should be possible to extend the calibration

procedure to include the c: terms. This would make the analysis much more complicated, however, and would

require taking measurements at more than one decentering distance c.

The errors in coefficients _o and _:for the simulated calibration test are essentially zero, because the corre-

sponding ACF calibration coefficients D_l(r) and/gt(r) can be determined essentially perfectly from the docking
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angle data. In this example we use four clocking angles, which gives essentially perfect results for all the coefficients

except Do(r), D4(r), ..., D2o(r), and ql, qs, .--, qzl-

5 ACF TILT

In the preceding section it was assumed that the ACF is not tilted when it is moved. This section discusses

what will happen if this is not the case, and small random tilts occur. The resulting errors need not affect the

alignment of the HRMA mirrors with respect to each other, but can affect the alignment of the HRMA as a whole

with respect to an outside reference.

If the ACF is tilted, the function f(z, y) specifying its surface will become f(z, y) -4 f(z, y) + Az + By, where

A and B are constants. If the tUt changes each time the ACF is moved, A and B will be different for each ACF

position. According to (16), the beam displacement will therefore become

6(r, O, % _) -4 _(r, 0, 7, a) + 2L [.4(% a) T iB(% a)] e 'c°_°), (30)

where 7 and a are the angles that determine the position of the ACF. If we define C(7, a) = A(7, 4) + iB(7, a),

and substitute (30) into the Fourier transforms (22)-(24), we get

-. + -
ez,(cr) --_ ez,(a) + 2LCz(a)*, ¢ol(c_) _ ¢o,(a) - 2LC,(a), (31)

¢2z,_ "--* ¢_z,* + 2LC_m, ¢o1,_ ---* Colin- 2LCz,_,

where Ct(a) -- Az(a) + iBz(c_) is the Fourier transform of C(7, a) with respect to 7, and Cz_,, -- A,,, + iBm, is
the Fourier transform of Cl(a) with respect to a. The results on the left are for a paraboloid, for which only
coefficients with k = 2 are affected, and the results on the right are for a hyperboloid, for which only coefficients

with k -- 0 are affected. It follows that the results of a calibration test will change as follows:

2LD_I(r) -4 2LD_,(r) 2LD_,(r) -4 2LD_I(r)÷ 2LCol

2LDo(r) -4 2LDo(r) - 2L(r/c)C*_-l,o 2LD0(r) ---, 2LDo(r) - 2L(r/c)Clo

2LDI(r) ---* 2LDI(r) + 2LC_)_ I 2LDI(r) ---. 2LDI(r)

qo --" qo qo ---' qo- 2LCoo

q_ --" ql + 2L(rlc)C:l.o q, --" ql - 2L(r/c)C,o

q: "--* q2 + 2LC_o q2 ""+ q2

Xp q- iyp ""* Z1, "k iyp Zh "k iyh _ Zh q- iyh -- LCoo

zp --4 zp + (L2/c)C*_l,o z_, ---* zh -- (4L_/5c)Clo

(_pe I/3" ----* ¢xlJe iflP -- Co0 abe ifl_ _ abe i/9_" -- Coo

(32)

2 2 1/2E( p + = o = o
E(z_)l/2 (LZ/c)el 8.397 mm

E(c_)l/_ --_ V/2_1 = O.061arcsec

E(:c_ + y_)1/2 __ Lv'2_I = 2.969/zm

E(z_)l/2 = (4L_/5c)_1 --- 1.679mm

1/: = = O.061arcsec
(33)

where e_ = e/_. The factor x/_ is missing from the results for zv and za because they are real rather than
complex, so the imaginary part of the error can be ignored. The numerical values in (33) are for the specific case

N_ = N_ = 4, c -- 10mm, L = 20m for a paraboloid and 10m for a hyperboloid, and e = 0.173 arc sec, which

corresponds to A and B being uniformly distributed between :k0.3 arc sec.

The results on the left are for a paraboloid and the results on the right are for a hyperboloid. To estimate the

magnitudes of the errors that will be produced in the calculated displacement and tilt of the HRMA we must make
some assumptions about the possible values of the ACF tilts. If the slopes A and B are randomly distributed

with mean zero and variance e_, that is, E(A) = E(B) = 0 and E(A 2) = E(B _) = e2, where E(X) denotes the

expected value of X, then E(ICI _) = 2__. It can further be shown that E(IC_ml _) = 2e:/(N,_N-r) for any I and

m. It follows that the expected errors in a calibration test are



The errors resulting from ACF tilt may not generally be negligible, but since the tilt is the same over the

whole ACF surface, the errors will be exactly the same for all HRMA mirrors measured using the same sequence
of ACF tilts. Therefore, if the previously-installed mirrors are remeasured whenever a new mirror is added, and if

the new mirror is adjusted so that its displacement and tilt match the new measurements of the previous mirrors,
then all the mirrors will be correctly aligned with respect to each other, even though the displacement and tilt of

the HRMA as a whole will be unknown, and will appear to change every time a new set of measurements with

different ACF tilts is taken.
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